معرّفی متریک لورنتسی بر روی منیفلدها و بررسی گروههای لی تک مدولی

نویسندگان

  • حامدی مبرا لیلا
  • حامدی مبرا لیلا,
چکیده مقاله:

این مقاله چکیده ندارد

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انحنای گاوسی و میانگین زیر گروههای دو بعدی گروههای لی تک مدولی لورنتسی بعدی

ما در این تحقیق ابتدا با تشریح مفهوم انتگرال روی منیفلدها، به معرفی مفهوم تک مدولی بودن یک گروه لی پرداخته، همچنین با معرفی متریکهای شبه ریمانی روی منیفلدها، به معرفی مفهوم گروههای لی لورنتسی پرداخته ایم.سپس گروههای لی تک مدولی لورنتسی سه بعدی تحت ایزومورفیسم، به شش دسته مجزا تفکیک شده اند و بعد با تعریف انحنای گاوسی و میانگین زیر منیفلدهای شبه ریمانی انحنای گاوسی و میانگین زیر گروههای لی دو بع...

15 صفحه اول

ابرمیانگین پذیری مدولی روی نیم گروههای جبری

در این پایانامه ابرمیانگین پذیری مدولی و ابرمیانگین پذیری روی جبرهای باناخ مورد بررسی قرار می گیرد. جبرهای مورد بحث جبرهای مدولی روی جبرهای باناخ دیگری هستند.شرایطی ارائه می دهیم که ابرمیانگین پذیری مدولی و ابرمیانگین پذیری معادلند.

15 صفحه اول

همبندی های متریک روی جبرواره های لی

در این پژوهش مسئله سازگاری بین یک همبندی غیر خطی وبعضی ساختارهای هندسی دیگر روی جبرواره های لی و امتداد آن روی تصویر کلاف برداری را مطالعه و بررسی می کنیم. نشان می دهیم همبندی غیر خطی استاندارد تولید شده با لاگرانژ منظم روی یک جبرواره لی یک همبند منحصربفرد است، و با ساختار سیمپلکتیک ( ساختار اتصالی ) محاسبه پذیر است.

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

متریک های راندرز ناوردای دوطرفه روی گروه های لی

یک نوع خاص از متر های فینسلر، (?, ?)-متریک ها هستند که کاربردهای فراوانی در مهندسی و فیزیک دارند. یکی از پر اهمیت ترین ( ?, ?)-متریک ها،متر راندرز می باشد که ما قصد داریم دراین پایان نامه آن را بررسی می کنیم. ما در این بخش می خواهیم ویژگی های هندسی متریک های راندرز ناوردای دوطرفه را روی گروه های لی بررسی کنیم و شرایط لازم و کافی برای این که متریک راندرز ناوردای چپ از نوع بروالد باشند را بیان می...

15 صفحه اول

شارهای بسط ناپذیر منحنی ها در گروههای لی

در این مقاله، شارهای بسط ناپذیر از منحنی ها در گروههای لی سه بعدی با متریک دو-پایا مورد مطالعه قرار می گیرد. شرایط لازم و کافی برای آنکه منحنی شار بسط ناپذیر باشند برحسب معادله با مشتقات جزئی شامل انحناها بسط داده می شود. همچنین نتایجی برای حالت های خاص گروه های لی ارائه می کنیم.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 8

صفحات  83- 87

تاریخ انتشار 2006-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023